अपनी प्राथमिकता निर्धारित करें
फ़ॉन्ट स्केलिंग
अप्राप्ति
पृष्ठ अनुमापन
अप्राप्ति
रंग समायोजन
भा.प्रौ.सं.कानपुर
Arnab Ghosh

अर्नब घोष

PhD (IACS-Kolkata)

Assistant Professor, Department of Chemistry

शोध करना दिलचस्पी

Statistical Mechanics of Fermionic Systems, Quantum Thermodynamics

Office

FB 425,
Department of Chemistry
Indian Institute of Technology Kanpur,
Kanpur 208016

विशेषज्ञता

Non-equilibrium Statistical Mechanics
Open Quantum Systems
Quantum Thermodynamics

शिक्षा

PhD (2015), IACS-Kolkata

शिक्षण क्षेत्र

Quantum Mechanics

Statistical Mechanics

चयनित प्रकाशन

Arnab Ghosh, D. G. Klimovsky, W. Niedenzu, A. I. Lvovsky, I. Mazets, M. O.Scully and G. Kurizki, Two-level masers as heat-to-work converters, Proceedings of the National Academy of Sciences, USA 115, 9941 (2018).
W. Niedenzu, V. Mukherjee, Arnab Ghosh, A. G. Kofman and G. Kurizki, Quantum engine efficiency bound beyond the second law of thermodynamics, Nature communications, 9, 165 (2018).
Arnab Ghosh, C. L. Latune, L. Davidovich and G. Kurizki, Catalysis of heat-to-work conversion in quantum machines, Proceedings of the National Academy of Sciences, USA 114, 12156 (2017).
Arnab Ghosh, Review: Born-Kothari condensation for fermions, Entropy, 19, 479 (2017).
Arnab Ghosh, Parametrically coupled fermionic oscillators: Correlation functions and phase space description, Physical Review A, 91, 013835 (2015).
Arnab Ghosh, S. S. Sinha and D. S. Ray, Fermionic oscillator in a fermionic bath, Physical Review E, 86, 011138 (2012).
Arnab Ghosh, S. S. Sinha and D. S. Ray, Canonical formulation of quantum dissipation and noise in a generalized spin bath, Physical Review E, 86, 011122 (2012).

पेशेवर अनुभव

Assistant Professor, IIT-Kanpur: March, 2019-present

Post-Doc: Weizmann Institute of Science, Israel: June, 2015-Jan, 2019

PhD: IACS-Kolkata : April, 2015

वर्तमान शोध

In view of continuous progress in quantum technologies to create smaller and smaller devices, it becomes crucial for us to understand the thermodynamics of microscopic quantum systems. While classical thermodynamics is extremely successful in predicting the statistical behaviour of macroscopic objects, emerging field of quantum thermodynamics goes beyond it, by accounting for effects imposed by the laws of quantum mechanics. Therefore our primary aim is to acquire sufficient insights into these fundamental issues in order to make a bridge between thermodynamics and quantum statistical mechanics at both conceptual and operational levels.